PYRIMIDINE SYNTHESIS FROM METHYL 2,2-DIMETHYLACETOACETATE

Stephen R. James and Colin B Reese

Department of Chemistry, King's College, Strand, London, WC2R 2LS, England.

(Received in UK 27 June 1975; accepted for publication 7 July 1975)

It is well known that diesters of disubstituted malonic acids (\underline{la}) react with urea, thiourea and their derivatives to form pyrimidines, such as 5,5-diethylbarbituric acid¹ ($\underline{2}$). Corresponding disubstituted cyanoacetates (\underline{lb}) and malononitriles (\underline{lc}) are also reported² to undergo similar reactions. However, we are unaware of any reports in the literature, prior to the present work, relating to the synthesis of pyrimidines from disubstituted $\underline{\beta}$ -keto-esters (such as $\underline{3}$).

$$R^{1}R^{2}CXY$$

$$1 \quad a, \quad X = Y = CO_{2}R$$

$$b, \quad X = CN, \quad Y = CO_{2}R$$

$$c, \quad X = Y = CN$$

$$R^{1}, R^{2} = alkyl \text{ or aryl}$$

$$R^{1}, R^{2} = alkyl \text{ or aryl}$$

$$R^{1}R^{2} = alkyl \text{ or aryl}$$

$$R^{2}R^{2} = alkyl \text{ or aryl}$$

$$R^{2}R^{2} = alkyl \text{ or aryl}$$

$$R^{3}R^{2} = alkyl \text{ or aryl}$$

$$R^{4}R^{2} = alkyl \text{ or aryl}$$

$$R^{5}R^{2} = alkyl \text{ or aryl}$$

Methyl 2,2-dimethylacetoacetate 3 (3) reacts with S-methylisothiourea in aqueous solution at 20° to give the 5,6-dihydropyrimidine derivative (4a) in 70% yield. The latter compound (m.p 146-147°) was characterized 4 on the basis of its n.m.r. [τ (CD₃OD) 7.55 (3H, s), 8.64 (3H, s), 8.80 (3H, s), 8.84 (3H, s)], i.r. [ν CHCl₃ 3590w, 3380w, 1705s, 1630s cm⁻¹] and mass [\underline{M}^+ at $\underline{m/e}$ = 202.0766 (calc. 202.0775)] spectra and its elemental composition. Methyl 2,2-dimethylacetoacetate (3) reacts in the same way with S-ethylisothiourea and

2916 No. 33

 $\underline{\text{O}}$ -methylisourea to give $(\underline{4b})$ and $(\underline{4c})$, respectively The latter compounds have also been isolated as crystalline solids and fully characterized 6 .

When $(\underline{4a})$ is sublimed under reduced pressure or treated with methanesulphonyl chloride and triethylamine in dichloromethane solution, its dehydration product $(\underline{5})$ [τ (CDCl₃) 4.98 (lH, s), 5,20 (lH, s), 7.49 (3H, s), 8 60 (6H, s); \underline{M}^+ at $\underline{m/e}$ = 184 0665 (calc 184 0671)] is obtained and may be isolated crystalline (m p. 108-109°) in modest yield The formation of its tautomer $(\underline{6})$ is not observed under either set of reaction conditions.

<u>Acknowledgment</u> One of us (S.R.J) thanks the S R C for the award of a research studentship.

REFERENCES AND FOOTNOTES

¹E. Fischer and A Dilthey, <u>Annalen</u> 335, 334 (1904)

²D J Brown, "The Pyrimidines", Interscience, New York and London, 1962, pp. 68, 73

³K v Auwers, <u>Chem. Ber</u> 46, 494 (1913)

The preferred tautomeric structure of $(\underline{4a})$, $\underline{1}$ e whether the N-H proton is situated on $\underline{N}(1)$ or $\underline{N}(3)$, has not been determined.

⁵Satisfactory microanalytical data have been obtained for all the new compounds described

 $[\]begin{array}{l} 6 \\ \underline{(4b)} \\ \text{ has m p } \\ 150-151^{\circ}, \\ \tau \\ \underline{(CD_{3}\text{OD})} \\ \text{ 6 97 } \\ (2\text{H, q, }\underline{J}=7\text{Hz}), \\ 8 & 81 \\ (3\text{H, s}), \\ 8.85 \\ (3\text{H, s}), \\ 8.85 \\ (3\text{H, s}), \\ \underline{M}^{+} \\ \text{ at }\underline{m/e}=216 \\ \text{ O939 } \\ \text{ (calc. 216.0933)} \\ \\ \underline{(4c)} \\ \text{ has m p } \\ 132-133^{\circ}, \\ \tau \\ \underline{(CD_{3}\text{OD})} \\ \text{ 6 18 } \\ (3\text{H, s}), \\ 8 & 61 \\ (3\text{H, s}), \\ 8 & 80 \\ (3\text{H, s}), \\ 8 & 90 \\ (3\text{H, s}), \\ \underline{M}^{+} \\ \text{ at }\underline{m/e}=186 \\ \text{ 1010 } \\ \text{ (calc. 186 } \\ 1004) \\ \end{array}$